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 2 

Abstract 1 

High quality monitoring data are vital for tracking and understanding the causes of 2 

ecosystem change. We present a potentially powerful approach for phytoplankton and 3 

aquatic ecosystem monitoring, based on integration of scanning flow-cytometry for the 4 

characterization and counting of algal cells with multi-parametric vertical water profiling. 5 

This approach affords high-frequency data on phytoplankton abundance, functional traits 6 

and diversity, coupled with the characterization of environmental conditions for growth 7 

over the vertical structure of a deep water body. Data from a pilot study revealed effects 8 

of an environmental disturbance event on the phytoplankton community in Lake Lugano 9 

(Switzerland), characterized by a reduction in cytometry-based functional diversity and 10 

by a period of cyanobacterial dominance. These changes were missed by traditional 11 

limnological methods, employed in parallel to high-frequency monitoring. Modeling of 12 

phytoplankton functional diversity revealed the importance of integrated spatio-temporal 13 

data, including circadian time-lags and variability over the water column, to understand 14 

the drivers of diversity and dynamic processes. The approach described represents 15 

progress towards an automated and trait-based analysis of phytoplankton natural 16 

communities. Streamlining of high-frequency measurements may represent a resource for 17 

understanding, modeling and managing aquatic ecosystems under impact of 18 

environmental change, yielding insight into processes governing phytoplankton 19 

community resistance and resilience. 20 

  21 
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 3 

Introduction  1 

 2 

Freshwater ecosystems are characterized by high levels of biodiversity, and are among 3 

the most threatened ecosystems on earth [1, 2] (Millennium assessment: 4 

http://www.maweb.org). Understanding and managing environmental change in aquatic 5 

ecosystems is complicated by co-occurring and interacting stressors like climate change, 6 

eutrophication and pollution that, for example, can interact to favor harmful algal blooms 7 

[3-6]. We suffer from a general lack of knowledge on the background rates and direction 8 

of change in pristine ecological systems, as well as in stressed ecological communities 9 

[7]. These limits can hamper our ability to detect the signature of a range of 10 

anthropogenic impacts on ecosystems, or predict patterns of recovery.  11 

Phytoplankton communities are highly diverse and dynamic. They respond rapidly to 12 

climate change, eutrophication and pollution, and play an important role in aquatic 13 

ecosystem biogeochemical processes [4, 8-14]. Phytoplankton density (algal blooms) and 14 

community composition (e.g. toxic cyanobacteria) are the prime agents impacting water 15 

quality, ecosystem and human health [15], and have been suggested to be used as such for 16 

ecosystem assessment [16-19]. Monitoring, understanding and predicting changes in 17 

structural (composition, diversity, evenness) and functional (phenotypic characteristics, 18 

growth rate, productivity) aspects of phytoplankton communities across space and over 19 

time represents however a challenge for aquatic ecology. The capturing of population 20 

dynamics, community succession and adaptation to environmental change requires: 1) 21 

high-frequency sampling to follow fast plankton fluctuations [20] and potential chaotic 22 

dynamics [21]; 2) vertical (depth) distribution of algal taxa and their physio-23 
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 4 

morphological characteristics (traits) [22]; 3) a functional, trait-based assessment of 1 

communities and ecosystems based on the characteristics of the organisms’ phenotypes 2 

that directly respond to environmental changes and determine effects on aggregated 3 

processes [13, 23, 24].  4 

The goal of this article is to present an integrated platform able to: 1) provide 5 

automated high-frequency measurements of phytoplankton at different lake depths; 2) 6 

couple in situ biological monitoring with data about the physical environment; 3) provide 7 

a streamline of real-time data for modeling and forecasting phytoplankton dynamics. By 8 

integrating a CytobuoyTM with an IdronautTM vertical profiling system, we addressed the 9 

objective of increasing spatio-temporal resolution in field data collection. It has been 10 

proposed that scanning flow-cytometry, offered by instruments like the commercially 11 

available CytobuoyTM, may offer advantages over microscopic methods for cell counting 12 

and classification of phytoplankton, including the possibility of automation and high 13 

frequency field measurements of phytoplankton physio-morphological characteristics 14 

[20, 25-27]. A novel aspect of our monitoring approach therefore lays in the use of 15 

cytometry-data for a description of phytoplankton functional diversity and expressed 16 

phenotypic traits, which allow tracking phytoplankton responses at the functional group 17 

level. Trait-based approaches and functional groups are becoming increasingly important 18 

in understanding phytoplankton ecology [22, 28-30]. 19 

In this study we tested our monitoring platform optimized for deep water bodies, 20 

designed to afford comprehensive data to study phytoplankton ecology and to improve 21 

water resource management. To support the validity of our approach we report the results 22 

form a monitoring campaign (spanning roughly one month in May 2010) during which 23 
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 5 

automated measurements were coupled by fortnightly limnological data (physics, 1 

chemistry and biology) [31]. 2 

 3 

Materials and methods 4 

 5 

Automated monitoring platform. Phytoplankton counting, characterization and 6 

classification were performed using a scanning flow cytometer CytobuoyTM (Woerden, 7 

the Netherlands), designed to analyze the full naturally occurring range from small (e.g. 8 

picoplankton) to large (e.g. colonial cyanobacteria) planktonic particles (1 to 700 µm in 9 

diameter and a few mm in length) and relatively large water volumes 10 

(http://www.cytobuoy.com) [25] (Fig. S1-e). In our instrument, particles were intercepted 11 

by two laser beams (Coherent solid-state Sapphire, 488 nm and 635 nm, respectively, 15 12 

mW) at the speed of 2 m s-1. In this study, digital data acquisition was triggered by the 13 

sideward scatter (SWS) signal (908 nm). The light scattered at two angles, forward 14 

(FWS) and SWS, provided information on size and shape of the particles. The 15 

fluorescence (FL) emitted by photosynthetic pigments was detected as red (FLR), orange 16 

(FLO) and yellow (FLY) signals collected in the wavelength ranges of 668-734 17 

(chlorophyll-a, Chl-a), 601-668 (phycocyanin and phycoerythrin) and 536-601 nm 18 

(degraded pigments), respectively. Laser alignment and calibration processes were done 19 

before the monitoring campaign using yellow FL beads of 1 and 4 µm diameter. 20 

Our CytobuoyTM allowed automatic acquisition of particles in time-intervals, time-21 

specific measurement, and fixed-measurement on occurrence of a trigger signal (see 22 

below). This study was based on automated acquisition of 2 fixed-measurements for 23 
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 6 

every trigger-signal received in order to optimize the detection and quantification of 1 

small and large particles in two separated analyzes, and on a scheduled time-specific 2 

background measurement per day with water being sampled at 25 m (no phytoplankton 3 

growth). Remote accessibility of the CytobuoyTM via the internet-UMTS network allowed 4 

unlimited data access and transmission rates along with increased location flexibility. 5 

Further technical details on our CytobuoyTM, measuring settings and configurations are 6 

reported in the Supplemental Online Material. 7 

In order to accomplish depth resolution, we employed a vertical profiling system made 8 

up of three integral parts: Controller Module (Fig. S1-a,-b), Profiler Module (Fig. S1-b), 9 

and OCEAN SEVEN 316Plus CTD (O7) multiparameter probe (Fig. S1-c) (Idronaut, 10 

Brugherio, Italy, www.idronaut.it). The O7-probe was equipped with seven sensors: 11 

pressure, temperature (°C), conductivity (µS, absolute and at 20°C), pH, oxygen (mg / L 12 

and % saturation), and NO3 (µg /L) (IdronautTM). An external TriLux fluorimeter was 13 

interfaced with the O7 probe in order to quantify levels of Chl-a, phycoerythrin and 14 

phycocyanin (Chelsea Technologies Ltd, Surry, UK). More information on the 15 

IdronautTM profiling system can be found in the Supplemental Online Material. 16 

For automatic depth profiles, we allowed the CytobuoyTM to accept an electric signal 17 

from the IdronautTM Controller Module as a trigger to start the measurement cycle during 18 

O7 step-profiles. We ran two independent automatic monitoring programs, one with the 19 

CytobuoyTM and one only with the O7-multiparameter probe, with separated profile 20 

settings and different monitoring frequencies. In this study we scheduled a step profile 21 

involving six depths - covering the entire photic zone - with the CytobuoyTM (2, 4, 6, 8, 22 

10 and 12 m) and a continuous profile with the O7-multiparameter probe from 1 to 20 m 23 
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 7 

to be performed twice a day each, to catch diel variations in the temperature structure of 1 

the water column: the theoretical maximum and minimum daily stratification at 3 pm and 2 

3 am (12 h frequency), respectively. 3 

For step-profile phytoplankton measurements, we retrieved water from selected depths 4 

using an external pump (capacity 1 L min-1), an antimicrobial silver-nanoparticle coated 5 

and shaded flexible polyethylene tubing (FlexeleneTM, Eldon James Corp., Loveland, 6 

Colorado, USA), and a surface plexiglass chamber (250 mL) from which the CytobuoyTM 7 

sub-samples through a needle injector (Fig. S1-e). The pump was placed downstream 8 

from the chamber in order to avoid damaging algal cells or colonies prior to 9 

measurements. More information on structural components of the monitoring platform, 10 

how we integrated our instruments to achieve depth profiles, and an example of 11 

automated operation using the integrated system and maintenance details are reported in 12 

the Supplemental Online Material. 13 

Sampling. The automated monitoring platform was moored in Lake Lugano, at a site 14 

protected from strong winds and currents and close to the location of the routine historic 15 

lake monitoring program (coordinates 45°57'33.43"N, 8°52'53.49"E) (Fig. S2). This site 16 

is representative for the most eutrophic of the lake’s three distinct basins [31] (Fig. S2). 17 

Data presented in this article refer to the monitoring period from the 28th of April to the 18 

31st of May 2010 (with 6 depths over the photic zone and a frequency of two profiles per 19 

day). Independent limnological data were collected at 300 m distance from the platform 20 

with a fortnightly frequency. They included physical characteristics of the whole water 21 

column, chemical analyses on algal nutrients and integrated phytoplankton samples (from 22 

0 to 20 m). Additional information on these data can be found in the Supplemental Online 23 
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 8 

Material. For comparison between cytometry-based richness and phytoplankton species 1 

richness (Table 1, Fig. S6) we used additional samples from Lake Lugano collected 2 

between June and December 2010 and data from a study conducted in Lake Zurich 3 

during spring 2009 [32] (Supplemental Online Material). 4 

Data analysis. Data manipulation, analysis and graphics were performed in the R 5 

programming language (www.r-project.org). The CytobuoyTM provided 54 descriptors of 6 

3D structure and FL profile for each particle [25]. Datasets also included original 7 

sampled volume, date, time and depth at which particles were taken. We visually 8 

inspected the distribution of raw data with regards to FL signals and set database-specific 9 

threshold levels to divide fluorescent (FL) from non-FL particles. The overall FL and 10 

non-FL databases comprised 1 and 5 million particles, respectively. 11 

CytobuoyTM particle descriptors were standardized to zero mean and unit variance and, 12 

by principal component analysis, reduced to 33 orthogonal vectors covering 99 % of total 13 

variance in the data (data not shown). Principal components were utilized for grouping 14 

particles into functional categories using K-means clustering. We compared several K 15 

values and selected the optimal number of K based on the within groups sum of squares 16 

[33]. Phytoplankton densities were calculated by inferring the number of cells from the 17 

number of humps in the SWS signal of each particle to account for colonial species [20, 18 

25]. O7 sensor data were organized in a separated database. Cyanobacterial-like particles 19 

were identified based on FLO and FLR emissions after excitation by the 495 nm and 635 20 

nm lasers, respectively, after visual inspection. These signals are expected as a response 21 

to the presence of the cyanobacterial-specific pigment phycocyanin [25]. 22 
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 9 

 We modeled richness of CytobuoyTM-derived functional groups of phytoplankton 1 

(response variables) in the upper 12 m of the water column based on high frequency 2 

environmental data (explanatory variables). Explanatory variables included: water 3 

parameters (mean of top 12 m), coefficient of variation (CV = SD / mean) of parameters 4 

over water-column and meteorological data at time-lag(0), -lag(1) (=24h) and -lag(2) 5 

(=48h). The response variables showed significant temporal autocorrelation only at time-6 

lag(1) (data not shown). We therefore included for each model the response variable at 7 

time-lag(1) as explanatory, in order to account for temporal autocorrelation of data. All 8 

variables were scaled in order to standardize effect sizes and let to compete in the same 9 

model. The best model was selected based on Akaike's information criterion (AIC) with a 10 

stepwise procedure (alternation of forward selection and backward elimination of 11 

variables with p > 0.05) [34]. The relative importance of drivers was assessed by 12 

bootstrapping (999 times) the percentage contribution to the R2 of the model among the 13 

regressors, and extracting the relative 95% confidence intervals. 14 

 15 

Results and Discussion 16 

 17 

Phytoplankton depth heterogeneity. Our monitoring approach was able to reveal fine 18 

changes in the relative depth distribution of phytoplankton functional-group richness, 19 

Chl-a concentration and cell density with statistically significant differences between day 20 

and night profiles (Supplemental Results, Fig. S3-S4). Similar data have been observed 21 

using flow-cytometry in oceanic profiles of phytoplankton communities [35-37]. We did 22 

not observe a significant difference in the vertical physical structure of the water column 23 
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 10 

between day and night profiles (Fig. S3-S4), and limited changes between day and night 1 

air-temperatures during the study period (data not shown). Our data suggest that depth-2 

specific day-night dynamics in phytoplankton community composition and abundance are 3 

driven by biological factors, rather than environmental changes (Supplementary Results 4 

and Discussion). 5 

Temporal phytoplankton dynamics. The frequency and intensity of phytoplankton 6 

blooms are key elements for ecological status definition [16, 17, 19]. Considering that 7 

most algal taxa can reach bloom conditions and disappear within a few days (implying a 8 

maximum oscillation frequency of 2-3 density peaks per week), a minimum sampling 9 

frequency of 4 to 6 times per week would be needed to follow algal dynamics (Nyquist 10 

frequency, Table 1) and quantify their intensity adequately [20]. 11 

Our automated monitoring platform was able to perform 2 vertical profiles per day (at a 12 

fixed depth the maximum frequency could be of 6 samples per hr). Figure 1 reports 13 

results from daily monitoring samples (time is 3 pm, frequency = 1 day-1) during the 14 

study. This frequency was capable of capturing fine fluctuations in FL particle density 15 

(phytoplankton) and total Chl-a concentration over the water column (Fig. 1A). Our data 16 

were comparable to previous work using flow-cytometry in the field in terms of temporal 17 

resolution on algal dynamics ([27] and literature therein). Measured phytoplankton 18 

density was comparable with microscopic counts and correlated well with Chl-a 19 

concentration levels (Fig. 1A) (R2-adjusted = 0.651, p = 4.324-08), as also reported 20 

elsewhere [32]. Our system was able to follow dynamics of non-FL particles (suspended 21 

solids, dead cells, heterotrophic bacteria), which did not correlate with algal cell 22 
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 11 

concentrations apart from a short period in the middle of the time-series (days 15 to 18) 1 

(Fig. 1A). 2 

Previous work using flow cytometry in phytoplankton aimed at identifying broad 3 

functional groups (such as picoeukaryotes, microalgae, cyanobacteria, etc.) and some 4 

phytoplankton species with clearly distinguished morphology or pigmentation (such as 5 

Pseudo-nitzschia, Cryptomonas, Synura, Dinobryon) [20, 25, 27, 38] (and literature 6 

therein). This type of analysis lacked a proper measure of diversity. We used the 7 

CytobuoyTM to describe key phytoplankton traits like size, coloniality, pigment type and 8 

content, which we used to create groups of functionally similar individuals [29, 30]. The 9 

possibility of monitoring individually measured phytoplankton physio-morphological 10 

descriptors may offer the best prospects in terms of objectivity, reproducibility, functional 11 

properties and prediction of algal assemblages [22, 23, 30]. The number of CytobuoyTM-12 

derived functional groups was comparable with the total number of species detected in 13 

the photic zone of the water column (Fig. 1B, Fig. S6), as also reported elsewhere [32]. 14 

Generally, the number of functional groups in a community is smaller than the number of 15 

species, since in current functional classification methods more than one species can be 16 

assigned to the same functional category [29, 30]. With our trait-based approach, 17 

however, it is also possible that individuals of the same species can be allocated to 18 

different functional groups based on their expressed morphology (for example, colonial 19 

species can be assigned to two different groups depending on whether they are present as 20 

single cells or colonies). The CytobuoyTM description of the relative abundance of 21 

phytoplankton functional groups deviated from microscopically measured evenness (Fig. 22 

1B). This could be caused by superior precision of automated density measurements, and 23 
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 12 

to the fact that the identity (and abundance) of CytobuoyTM-derived functional groups 1 

does not fully reflect the identity (and abundance) of microscopically defined taxonomic 2 

groups as reported above (several species can map into one functional category and 3 

individuals of the same species can be assigned to different groups). 4 

We observed a strong decrease in phytoplankton functional richness and evenness in 5 

the middle of the time-series (Fig. 1B), followed by a short recovery period that led to 6 

higher cell density (Fig. 1A). These dynamics were completely missed by the fortnightly 7 

limnological sampling (Fig. 1). Our approach offered the advantage of having automated 8 

measurements of environmental conditions for the observed algal dynamics (Fig. S7). Six 9 

days of rainy and stormy weather (Table S1) were associated with a period of low 10 

phytoplankton diversity and productivity (with high levels of non-FL particles), and a 11 

decrease in CV in temperature and conductivity over the first 12 m of the water column. 12 

This eventually led to a mixing event on day 19 (Fig 1C, Fig. S7). The phytoplankton 13 

community in the days preceding disturbance (started at day 5) showed a gradual decline, 14 

reaching the minimum of evenness and richness just before the mixing event (on days 17 15 

and 18, respectively). The mixing event re-established evenness in the community that 16 

fully recovered functional diversity in 6 days (Fig. 1B-C). Functional diversity, as 17 

opposed to taxonomic diversity, appears to be a better predictor of ecosystem functioning 18 

across a range of communities and measures of functional diversity may afford a better 19 

description of the functionality of the ecosystem and its resilience to disturbance [12, 13, 20 

23, 24, 39].  21 

Using Cytobuoy
TM

-derived phytoplankton traits. Our approach allows tracking 22 

phytoplankton physio-morphological characteristics such as cell size and shape (which 23 
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 13 

influence motility and nutrient uptake through surface/volume ratio), photosynthetic   1 

performance (driven by pigment type and concentration), active nutrient uptake and 2 

coloniality [22]. Cell size and photosynthetic performance are key phytoplankton traits, 3 

affecting growth, metabolism, access to resources, susceptibility to grazing, and are 4 

extremely plastic responding to the environment and to species interactions [22, 32]. 5 

Analysis of dynamics and distributions of these focal phytoplankton traits could improve 6 

our forecasting capabilities of community structure and ecosystem functions [12, 13, 24, 7 

39]. Pigment profiles can also be used to specifically target certain phytoplankton groups 8 

of interest in their spatio-temporal dynamics [20, 25]. 9 

We report temporal changes in mean and variance of phytoplankton size and suspended 10 

non-FL particles size (Fig. 2A, Fig. S8). In addition, we tracked the dynamics in 11 

abundance of cyanobacteria using CytobuoyTM data and phycocyanin / Chl-a 12 

concentration ratios obtained with the O7-probe (Fig. 2B). Shortly before “disturbance” 13 

(days 15-17), a period characterized by low diversity and productivity (Fig. 1), the study 14 

site was dominated by large cyanobacterial colonies (Fig. 2A-B). Mean water column 15 

cyanobacterial density obtained by the CytobuoyTM was almost identical to microscopic 16 

count levels (Fig. 2B) and was likely associated with the presence of Planktothrix 17 

rubescens filaments (Table S2). The mixing event rapidly and dramatically reduced 18 

cyanobacterial abundance and the average size of the phytoplankton community (Fig. 2) 19 

[40]. Variation in the dimensions of non-FL particles appeared to be very small compared 20 

to the dynamics in phytoplankton size (note the y-axis scales in Fig. 2A). Compared to 21 

conditions before the disturbance, the final days of our time-series were characterized by 22 

smaller size phytoplankton cells (Fig. 2A), probably eukaryotic nanoplankton of genera 23 
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 14 

Stephanodiscus and Melosira (Table S2), dominating a more productive (Fig. 1A) and 1 

diverse community (Fig. 1B, Fig. S8). 2 

Our approach introduces the possibility of monitoring a large number of phytoplankton 3 

individuals and their traits per population or through the entire community. Individuals 4 

and populations should be the basic units of investigation to assess the status of 5 

communities and ecosystems, since they respond phenotypically (and genetically) to 6 

disturbance or stress and eventually evolve altering community processes and ecosystem 7 

functioning [41]. 8 

Modeling high-frequency phytoplankton dynamics. Our automated monitoring 9 

approach allows to better couple environmental forcing with phytoplankton community 10 

dynamics, in particular at the functional level (which may relate to crucial ecosystem 11 

services [13, 24, 42]). Using data from the period of study, we modeled the CytobuoyTM-12 

based phytoplankton functional richness in order to provide an example of how spatio-13 

temporal measurements of environmental conditions, coupled with biological data, can 14 

provide insight into drivers of community responses and changes. 15 

Temperature (both atmospheric and water), conductivity (whose main contributors 16 

were carbonate and bicarbonate ions) and the heterogeneity of environmental conditions 17 

over the water column appeared to be the most important drivers of phytoplankton 18 

functional richness (Table 2). Most of the drivers appeared to influence the response 19 

variable with a time lag of 24 or 48 h (Table 2). Our modeling exercise highlights the 20 

importance of i) time-lags between environmental change and response at the level of 21 

phytoplankton community, ii) variability of parameters over the water column (depth 22 

heterogeneity), and iii) in situ meteorological conditions for understanding and modeling 23 
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 15 

phytoplankton community dynamics. Intensity of fluctuations and heterogeneity by depth 1 

in key environmental variables may represent fundamental factors to understand and 2 

predict changes in plankton diversity [14]. The collection of the above type of high-3 

resolution data would be intractable without the aid of an in situ automated monitoring 4 

station like the one presented in this study. A similar approach can be used to model and 5 

forecast cyanobacterial blooms. 6 

Towards an adaptive, integrated approach to aquatic ecosystem monitoring. 7 

Monitoring frameworks that evolve along with our improved knowledge of ecosystem 8 

processes would strongly benefit ecosystem health assessment and management by 9 

allowing to assess the impact of ongoing environmental change, to study recovery 10 

processes, and to built more reliable forecasting models [43]. Sophisticated monitoring 11 

approaches like the one that we have developed can offer the spatio-temporal resolution 12 

and flexibility necessary to capture and model natural phytoplankton responses to 13 

disturbance or stress, or to test ecological and evolutionary hypotheses including the 14 

mechanisms that lead to stable coexistence of species. For example, high-frequency data 15 

afford the possibility of studying niche processes and environmental filters on diversity 16 

and trait distribution patterns [44, 45], while tracking the vertical distribution of 17 

functional groups and their abundance allow testing for the importance of dispersal 18 

limitation among patches in the assembly of the phytoplankton community [46]. 19 

Table 1 summarizes some of the properties of our automated data-series compared to 20 

traditional monitoring, including diel temporal resolution in phytoplankton community 21 

dynamics and water column structure over the photic zone of the lake (Fig. 1, 2, S3, S4, 22 

S7). We were not able to capture horizontal spatial heterogeneity of phytoplankton and 23 
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the associated environment. The lack of spatial information across the water surface may 1 

be solved by integrating our platform data with remote sensing from satellites or from 2 

local devices that use spectral information reflected from the water surface [47] 3 

(http://www.waterinsight.nl). Depth represents however the most heterogeneous aspect of 4 

the phytoplankton spatial environment, and our vertical profiles may be crucial to 5 

understand and model the effects of disturbance, spatial heterogeneity and patch 6 

dynamics on phytoplankton community structure [48, 49]. Several phytoplankton groups 7 

are in fact capable of vertically migrating in the water column being motile (e.g. 8 

dinoflagellates) or able to regulate buoyancy (e.g. cyanobacteria) [29]. Depth resolution 9 

is therefore essential to track algal populations, which can be defined as groups of similar 10 

organisms (for example belonging to the same cytometry-derived cluster) that co-exist at 11 

the same time in the same water layer. 12 

The bottleneck in monitoring natural systems is the development of automated 13 

technologies for the identification and counting of organisms [20, 27, 50, 51]. Our 14 

description of phytoplankton richness obtained by cluster analysis of automated flow-15 

cytometry data appeared to closely match the taxonomic richness derived by microscopic 16 

analysis (Table 1, Fig. S6). Technical repeatability and across-lab reproducibility 17 

currently represent disadvantages of classical microscopic counts. An automated 18 

monitoring station like the one that we developed may offer the objectivity and 19 

reproducibility of a standardized measuring system that: 1) reduces human error; 2) 20 

affords a detailed description of individual algal features; 3) provides high data 21 

complexity; and 4) increase spatio-temporal resolution compared to man-made 22 

monitoring campaigns (Table 1) [20, 50]. 23 
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 17 

The temporal and spatial monitoring scales of our analysis (Table 1) were roughly 1 

equivalent since both of them reflected processes operating over day-night cycles across 2 

the water column. The benefits of an integrated spatio-temporal approach to monitoring 3 

include [52]: (i) accounting for spatio-temporal coexistence mechanisms that purely 4 

spatial or temporal approaches would miss; (ii) generating new hypotheses and allowing 5 

rigorous testing of theoretical models; (iii) improving our descriptive power for 6 

developing forecasting models; and (iv) optimizing monitoring strategies by choosing 7 

appropriate scales for sampling. A fine spatio-temporal resolution with regards to 8 

organisms and the environment may represent a critical resource for scientists and 9 

stakeholders challenged by understanding, modeling and managing aquatic ecosystems 10 

[17-19]. The approach presented here can be applied to both freshwater and marine 11 

ecosystems, and to both natural and engineered environments such as drinking water 12 

reservoirs, water-treatment and aquaculture plants. 13 
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We present an approach for automated and trait-based monitoring of phytoplankton for 1 

understanding, assessing and managing aquatic ecosystems under disturbance or change. 2 

Supporting Information Available 3 

 4 

Text (Extended Materials and Methods and Supplementary Results and Discussion 5 

Sections), Figures S1-S8, and Tables S1-S2. This material is available free of charge via 6 

the Internet at http://pubs.acs.org. 7 
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Figure legends 1 

FIGURE 1. Automated measurements of phytoplankton density, diversity and associated 2 

changes in environmental heterogeneity. A) Phytoplankton abundance (from 3 

CytobuoyTM, solid line) compared to microscopic counts (�), abundance of non-FL 4 

particles (dashed line - scaled to fit graph by dividing values by 250) and Chl-a 5 

concentration (from O7-probe, grey line); B) Richness of CytobuoyTM-based functional 6 

groups (black line) compared to microscopic species counts (�), and Pielou’s evenness 7 

(Shannon-diversity / Log(species richness)) of groups (grey line) compared to the same 8 

index derived by microscopic counts (�); C) CV over the water column in temperature 9 

(black line) and conductivity at 20°C (grey line). The CV can be used as a proxy of 10 

environmental (depth) heterogeneity [14]. In A) and B), data represent the average of the 11 

top 12 m of the water column. The grey vertical line highlights the mixing event. 12 

FIGURE 2. Using phytoplankton traits such as size and pigment content to track 13 

community changes. A) Average size of FL (phytoplankton; black line) and non-FL 14 

(suspended solids, bacteria, dead cells; grey line) particles; B) Ratio between 15 

concentrations of phycocyanin and Chl-a (black line) and abundance of cyanobacterial-16 

like cells (grey line) compared to microscopic counts of cyanobacteria (�). Phycocyanin 17 

is a cyanobacterial-specific pigment: the ratio between phycocyanin and Chl-a 18 

concentrations can be used as an indication of the dominance of cyanobacteria in the 19 

phytoplankton community. Data represent the average of the top 12 m of the water 20 

column. The grey vertical line highlights the mixing event. 21 

 22 
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Table footnotes 1 

Table 1: 
a considering one sample per month plus an extra fortnightly sample during 2 

productive seasons as in [14, 31] (Supplemental Online Material); b the automated system 3 

is currently producing data series across seasons; c range in number of species and 4 

functional groups during intercalibration performed in Lake Zurich and Lake Lugano: 5 

Reynolds categories [29] were utilized for functional grouping of microscopically 6 

identified species, for CytobuoyTM-derived functional groups see the Materials and 7 

Methods, for a plot of CytobuoyTM-derived versus taxonomic diversity see Fig. S6; d 8 

Quality assessment trials highlighted that phytoplankton microscopic counts can be 9 

difficult to reproduce across laboratories since they rely on human subjective assessment, 10 

biased by the experience/ability/condition of the operator, and that they suffer from low 11 

repeatability (high differences between replicated samples) 12 

(http://www.planktonforum.eu) [26, 50] (Supplemental Online Material); e five 13 

consecutive-replicated sampling cycles were performed in this study at the same depth 14 

and data assessed by canonical discriminate function analysis (Supplemental Online 15 

Material); * From [34]. 16 

Table 2: 
¶ Drivers: T = temperature (°C); Cond. = conductivity at 20°C; CV = coefficient 17 

of variation over the sampled depths; Light = maximum irradiance (W/m2); lag(1) and (2) 18 

= time-lag 24 and 48 h, respectively. * Drivers are ordered based on their relative 19 

contribution to the R2 of the model, expressed as percentage of total. ^ Confidence 20 

intervals refer to the bootstrapped relative contribution to the R2 of the model. 21 
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Table 1: Comparison of selected properties of automated measurements to classical 1 

phytoplankton monitoring. 2 

Feature* Classical Limnology Automated platform 

Number of samples year-1 (n) 12-18a > 700b 

Lag (∆) 2 weeks – 1 month 12 h 

Fundamental Period (T0 = ∆n) 12 > 700 

Frequency (1/T0) 0.083 0.0014 

Nyquist frequency (1/2∆), 
highest possible frequency 

1-2 months (6-12 cycles 
year-1) 

24 h (365 cycles year-1) 

Resolution of depth gradient from 1 integrated to 10 
samples over photic zone 

from 6 to 12 samples over 
photic zone 

Phytoplankton density and 
physio-morphological traits 

estimated from circa 200-
500 counts / in 100-200 mL 

from circa 30,000 counts / 
in 100-400 µL volume 

Number of descriptors 
measured per individual 

2 (size, volume) 54 (3D descriptors, 
pigment type, 
concentration etc.) 

Estimation of diversity taxonomic, functional Functional 

Number of taxa groups 14 to 61 per samplec NA 

Number of functional groups 5 to 20 per samplec 4 to 53 per samplec 

Reproducibility / repeatability 
of data 

lowd high [27]e 
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Table 2. Multiple linear regression model describing phytoplankton richness 1 

(CytobuoyTM-derived functional groups) in terms of changes in environmental conditions 2 

over the period of study.  3 

Driver
¶
 Coefficient p-value Percentage 

of R
2
* 

95% confidence^ 

lower          upper 

Air T-lag(1) 0.906 0.0000 22.7 0.113 0.277 

Cond.-lag(1) 0.266 0.0282 16.3 0.067 0.230 

Cond.-lag(2) 0.589 0.0000 15.7 0.096 0.193 

CV-Cond.-lag(1) 0.751 0.0000 10.8 0.063 0.142 

pH-lag(2) 0.709 0.0000 10.2 0.058 0.168 

N-NO3 -0.286 0.0000 4.5 0.032 0.064 

CV-pH-lag(1) 0.544 0.0143 4.2 0.042 0.066 

N-NO3-lag(2) 2.246 0.0001 3.9 0.034 0.047 

CV-Water T-lag(1) -1.394 0.0000 3.8 0.025 0.073 

Water T-lag(1) -0.932 0.0010 2.7 0.022 0.037 

N-NO3-lag(1) 1.519 0.0035 2.6 0.031 0.037 

CV-NO3-lag(1) 0.534 0.0097 1.7 0.016 0.040 

Light -lag(1) 0.203 0.0012 0.9 0.015 0.079 

 4 
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Figure 1 1 
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Figure 2 1 
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